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Motivation and Introduction

. » RL policies trained in physical simulators often encounter Reql2Sim & Sim2Real
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. to sim-to-real gaps.

-+ Simulators typically fail to replicate visual realism and

. complex real-world geometry. Moreover, the lack of
realistic visual rendering limits the ability of these policies
for high-level tasks requiring RGB-based perception like
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ego-centric navigation. : ; :
We present a Real-to-Sim-to-Real framework that : e %
generates photorealistic and physically interactive "digital |[g : £l
twin" simulation environments for visual navigation and \_

locomotion learning.
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Reinforcement Learning in Simulation
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VR-Robo real-to-sim-to-real framework. We build a realistic and physically interactive simulation environment with GS-mesh
hybrid representation and occlusion-aware composition & randomization for policy training. Finally, we zero-shot transfer the RL
policy trained in simulation into the real robot for ego-centric visual navigation and locomotion.

RL Policy Training Experiment Results
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Robotics & More Demos on Website Page:

https://vr-robo.github.io/
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