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Figure 1. During inference, DIMO can instantly generate diverse 3D motions and high-fidelity 4D contents in a single forward pass from
a single generative model, by sampling from a continuous motion latent space.

Abstract

We present DIMO, a generative approach capable of gen-
erating diverse 3D motions for arbitrary objects from a sin-
gle image. The core idea of our work is to leverage the
rich priors in well-trained video models to extract the com-
mon motion patterns and then embed them into a shared
low-dimensional latent space. Specifically, we first gener-
ate multiple videos of the same object with diverse motions.
We then embed each motion into a latent vector and train a
shared motion decoder to learn the distribution of motions
represented by a structured and compact motion represen-
tation, i.e., neural key point trajectories. The canonical 3D
Gaussians are then driven by these key points and fused to
model the geometry and appearance. During inference time
with learned latent space, we can instantly sample diverse
3D motions in a single-forward pass and support several
interesting applications including 3D motion interpolation
and language-guided motion generation. Our project page
is available at hitps://linzhanm.github.io/dimo.

1. Introduction

4D generation should be diverse in terms of motion. Our
community desires a generative model capable of produc-
ing these dynamic 3D objects, and once generated, with not
just a single motion per object but a space of many possible
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motions. This paper takes the first step toward addressing
this challenging problem.

Previously, generating dynamic objects with such rich
motion spaces has only been possible for category-specific
objects, such as humans and animals, using template models
where motion priors are obtained through time-consuming
and labor-intensive motion capture. A successful example
is the SMPL [33, 37] model for humans, whose generative
capabilities are built upon massive pose sequences captured
from real human data. However, this paradigm is not scal-
able to more general objects in the real world. How can
we build an SMPL-like model that can model and generate
diverse 3D motions for any dynamic object?

On the other hand, previous 4D object generative mod-
els [3, 18, 27, 31, 36, 43, 44, 48, 55, 69, 70, 73, 75, 76, 78,
83, 84] can work on general objects, but can only gener-
ate one motion per object in each expensive inference pass.
Generating diverse 3D motions of the same object requires
re-running the diffusion model [5, 32, 61, 70] and 4D recon-
struction [20, 34] repeatedly, which will easily lose identity
and cost extensive computing. How can we directly output a
4D object with a diverse motion space that can be sampled
instantly during inference?

Our key insight to address these issues is that recent ad-
vanced video models [5, 7, 62, 74] already contain rich mo-
tion prior knowledge for general objects and can serve the
role of the previous expensive motion capture for category-
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specific objects like humans. With a proper motion repre-

sentation, we can distill motion priors to specific objects

being generated and build an SMPL-like model for any
dynamic object, benefiting from jointly learning numerous
motion patterns of the same object together.

Building upon this insight, we introduce DIMO, the first
generative model of diverse 3D motions for any general ob-
jects. DIMO addresses two key issues: where the diverse
motions prior knowledge comes from and how to model
these motions into a unified object-specific motion space.
First, to obtain diverse motion knowledge for the target ob-
ject, we generate numerous videos containing diverse mo-
tion patterns from a single-view image with diverse motion
text prompts [1, 59] (Sec. 3.1). Second, to jointly model di-
verse motion patterns, we propose to factorize each 3D mo-
tion sequence into explicit and compact neural curves rep-
resented by sparse key point trajectories (Sec. 3.2.1). This
allows us to embed motions into a shared low-dimension la-
tent space and jointly learn their diverse distributions within
a single generative model (Sec. 3.2.2). To further cap-
ture the object geometry and appearance, we attach canon-
ical 3D Gaussians [20] to the dynamic neural key points
and fuse them for differentiable 4D optimization using only
photometric losses (Sec. 3.2.3).

During inference time, we can instantly generate diverse
3D motions and 4D contents in a single forward pass by
sampling from the motion latent space. We can also gener-
ate new 3D motions by interpolating within this space and
reconstruct unseen motions by optimizing latent codes. Ad-
ditionally, it supports the automatic creation of 4D anima-
tions that align with natural language descriptions, making
motion generation both intuitive and versatile (Sec. 4.3).

In summary, our main contributions include:

1. We propose the first generative approach of diverse 3D
motions for any general objects from a single-view im-
age, by distilling motion priors from video models.

2. We embed each motion pattern into shared latent space
and jointly learn the diverse motion distributions repre-
sented by structured neural key point trajectories.

3. At inference time, we can instantly generate diverse 3D
motions and 4D contents in a single forward pass and
support applications like latent space motion interpola-
tion and language-guided motion generation.

4. State-of-the-art performance on extensive settings and
standard 4D generation benchmarks.

2. Related Works

Video Generative Model. Leveraging Internet-scale image
and video datasets, 2D video diffusion models (e.g. T2V
and 12V) [5-7, 11, 13, 14,22, 47, 62, 74] have demonstrated
impressive results in generating photo-realistic videos with
consistent geometry and plausible motion patterns. Build-

ing on the success of these 2D video generation models, a
series of works [25, 61] have adapted the latent video diffu-
sion model as the 3D generator to generate novel views of
static objects from different viewpoints by fine-tuning it on
3D data. Other works insert additional modules to enable
camera control of video diffusion models [2, 4, 24, 66, 71].
Most recent works [29, 67, 70, 78] extend this capability
into the 4D domain, which leverages the pre-trained video
generation model for 4D generation by incorporating an ad-
ditional view attention layer to align multi-view images.

Diffusion-Based 4D Generation. Recent diffusion-based
4D generation methods have demonstrated significant ad-
vancements in achieving spatio-temporal consistency and
motion fidelity. Existing optimization-based approaches [3,
8, 18, 27, 31, 43, 48, 69, 76, 83, 84] leverage pre-
trained text-to-image [45], text-to-video [47], and image-
to-3D [32] diffusion models to distill a unified 4D represen-
tation (deformable neural 3D representation) [20, 34] via
score distillation [41, 65]. In contrast, photogrammetry-
based methods [36, 55, 70, 73, 75] directly generate multi-
view videos of a 4D object and use them as supervision for
subsequent 4D reconstruction. Despite these advancements,
current 4D generation approaches still focus on per-motion
optimization from a single prompt and fail to generate di-
verse motion patterns during a single inference stage.

3D Motion Modeling and Generation. Modeling the mo-
tion patterns of dynamic objects is crucial for behavior anal-
ysis and content generation. Recent works [30, 35, 39, 40,
50, 58, 63, 79, 80, 85] have explored learning generative
models for 3D human motions, leveraging parametric hu-
man shape models such as SMPL [33]. While some stud-
ies have concentrated on modeling animal motions using
keypoint tracking-based methods [19, 52, 53], others have
learned articulated [17, 28, 54, 68] and animatable [46, 72]
3D animals with generative motion templates. However, 3D
motions generated by these models are often restricted to a
specific category or skeleton structure, relying on category-
specific template models or requiring extensive annotated
data. In contrast, our work aims to model and generate
3D motions for any general objects without any pre-defined
template model or human-annotated data.

3. Method

Overview. Given a single-view image of a general object,
our goal is to model and generate its diverse 3D motions.
The core idea is to distill the rich motion priors from well-
trained video models and embed them into a shared latent
space. As shown in Fig. 2, we first distill diverse motion
patterns for the target object from video models (Sec. 3.1).
Next, we introduce a motion latent space to jointly model
the underlying motion distributions (Sec. 3.2). To ensure
efficient and robust training, we adopt a coarse-to-fine op-
timization strategy to jointly learn the diverse motion space
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Figure 2. Pipeline Overview. Given a single-view image of any general object, DIMO first distills rich motion priors from video models
(Sec. 3.1). We then represent each motion as structured neural key point trajectories (Sec. 3.2.1). During training, we embed each motion
sequence into a latent code in motion latent space and jointly model diverse motion patterns using a shared motion decoder (Sec. 3.2.2).
The decoded key point transformations are used to drive canonical 3DGS for 4D optimization with only photometric losses (Sec. 3.2.3).

and complex object geometry (Sec. 3.3).

3.1. Motion Priors Distillation from Video Models

A fundamental challenge in diverse 3D motion generation
for general objects is the limited motion data from labor-
intensive and time-consuming capture [33]. However, cur-
rent well-trained video models [7, 74] have already encoded
diverse and plausible motion patterns learned from exten-
sive Internet-scale data. With this insight, we first distill rich
motion priors for the target object from these video models.

Sourcing Diverse Motion Prompts from LLMs. To gen-
erate videos with diverse motions, we first need a collection
of motion prompts based on the reference image which em-
beds a partial knowledge about the object motion we intend
to explore. Since this information is incomplete, we rely
on prior knowledge within the multi-modal large language
model GPT-4o [1] to generate diverse motion prompts with
an auto-prompting technique. To align all motions with the
same initial object geometry state, we first employ a fine-
tuned Llama3 [59] to create a structured “meta” prompt
which contains a detailed description of appearance, ex-
pression, and an initial action state of the object. Then we
feed the reference image and the “meta” prompt to GPT-40
and ask for the description of subsequent potential motions.

Automatic Motion-Rich Video Generation. With motion
prompts and reference image based appearance prompts, we
use text-conditioned image-to-video model [74] to generate
motion-rich videos. We use an MLLM [12] to automatically
assess videos and filter out low-quality ones based on a pre-
defined score threshold. We also remove those with mini-
mal or excessive motion measured by flow magnitude [57].

Novel View Priors Distillation. To enhance the reconstruc-
tion generalization, we use multi-view video model [61, 70]
to obtain geometric priors by generating object novel views.

3.2. Modeling Diverse Motions in Latent Space

To jointly model diverse motion patterns within a single
generative model, we must have a proper motion represen-
tation to effectively model the underlying distributions. Fol-
lowing this, we first model each motion sequence with ex-
plicit, compact, and structured key point trajectories. Then
we embed motions into the latent space and train a latent-
conditioned motion decoder to jointly learn diverse motion
distributions. We further attach canonical Gaussians [20] to
capture geometry and fuse them for 4D optimization.

3.2.1. Key Point Trajectories as Motion Representation

Although the geometry and appearance of dynamic objects
are often complex and include high-frequency details, the
underlying motion that drives these geometries is usually
compact (low-rank) and smooth. Inspired by prior works
on the Motion Factorization [15, 23, 26, 51, 64, 82], we pro-
pose to factorize each motion into sparse neural trajectories
of key points P = {(p € R, 7, € RY) }kN:"l in canonical
space, which act as a low-rank motion basis. Specifically,
each key point k is parametrized by a canonical position py,
and a global control radius r, which parameterizes a ra-
dial basis function (RBF) that describes its influence weight
wj € RT on the nearby point p;:

’U)]k = Normalize (eXP (_ ||pj - png /QTk)) ' (1)

With the low-rank motion basis P, then each motion
sequence can be parametrized as neural curves formed by
the key points’ 6DoF transformations £ = {5,2}?:1, k e
{1,---, Ny}, where each pose £} € SE(3) at a timestamp
t consists of a 3DoF rigid translation T, € R* and 3DoF
rotation quaternion R} € SO(3) of each key point k. For-
mally, each key point based neural curve cj is defined as:

Ck:([5;’5137513""755]7rk)7 (2)



To maintain the correct topology correlation, we construct
the motion graph that connects key points based on their
neural trajectories. We define the graph edge €2y, as:

Q= KNNjeqr,.wy A0 ™)/T| |

3)

traj T
pkraj = concat(p,lc,pi, T ’pk)
where d(-, -) is the Euclidean distance function, 7' defines
the motion sequence length and KNN denotes the K-nearest
neighbors under the distance between two trajectories that
capture the global topological changes across time.

3.2.2. Joint Learning of Diverse Motion Distributions

To model the time-varying deformation, previous 4D recon-
struction and generation works train a specific deformation
network to overfit a single motion, which is time-consuming
and not generalizable to diverse motion joint modeling.
Most importantly, it doesn’t leverage the common motion
patterns of the target object. Therefore, to jointly learn di-
verse motion distributions, we embed a wide variety of mo-
tions of the same object into a low-dimensional latent space
with latent code 2z and train a shared deformation network.

Formally, for the motion indexed by m € {1,--- , N, },
we employ a latent-conditioned motion decoder D, to con-
dition on its latent code z,, and query canonical location p,
of each key point k£ with timestep ¢. The motion decoder D,
then outputs key point motion-specific 6DoF transformation
()m = (RL | TY),, € SE(3):

(ED)m = De (2m, Pl t) 4)

In motion latent space, we assume the prior distribution
over each latent vector p (z,,) to be a non-zero-mean multi-
variate Gaussian as z,,, ~ N (u,,,, o.,) with learnable pa-
rameters (f,,,, 0, ). Then motion-associated vector z,, can
be sampled using VAE reparameterization trick [21]:

z7rL:Hm+Um®€7eNN(OaI) (@)

The learnable distribution parameters (u,,,, 0., ) are learned
directly through standard back-propagation.

3.2.3. Geometric Modeling with Canonical 3DGS

The compact neural trajectories and latent space have effec-
tively modeled the various underlying motions across time.
We further employ a set of canonical 3D Gaussians [20] to
capture the object geometry and appearance. Formally, an
object is parameterized as Gaussians in canonical space:

g = {(ﬂi,RhSi?Oi?C’i) ivzgl (6)

where p;, R;, s;, 04, c; are the center, rotation, scale, opac-
ity and spherical harmonics (SH) of the Gaussian primitive
i e {l,--- ,Ng}(Ny < Ny). To get the geometry at the
timestep ¢, canonical Gaussians will be deformed by the

nearest canonical key point py and its graph edges €2, using
widely-used linear blend skinning (LBS) [51] with weight-
ing factor w € R calculated in Eq. (1).

g(t) = {(/’L; Rf7 Siy Oi,5 Ci)}jv:gl

(N
t pty _ t mt

(15, R;) = LBS ({wijaRjaTj}jEQk) (piy Ri)
The deformed 3D Gaussians G(t) are fused and then ren-
dered via a splatting-based differentiable rasterization [20].

3.3. Motion-Oriented Optimization

The total learnable parameters include diverse latent codes
z, canonical key points P, canonical 3D Gaussians G and a
motion decoder D.. For training efficiency and stability, we
adopt a coarse-to-fine motion pre-training schedule.

Rendering-Based Photometric Optimization. We ran-
domly sample the latent code z,, and infer the deformed
G(t) for target motion m at timestamp ¢. Then, we render
frames at training viewpoints and compare them with the
video supervision using RGB loss L,g1,, mask 108s Ly aek
and perceptual LPIPS loss Lipips. To encourage smooth 3D
surfaces, we also involve edge-aware depth smoothness loss
Ldepth and bilateral normal smoothness loss Lyormal [01].

‘Cphoto = £rgb + Emask + Clpips + ﬁdepth + Enormal (8)

ARAP-Based Geometric Optimization. To regularize the
3D motion of unconstrained key points, we optimize an As-
Rigid-As-Possible (ARAP) [49] loss Larap to encourage the
pairs of nearby key points (p; within the graph edges (),
of pi) to be locally rigid over time. Formally, given two
timestamps separated by interval At, we define L4, as:

N, T
£arap = Z Z Z wjk? Hd (p;vpi) —d (p;+At7pl;€+At) ”1

k=1t=1 jeQu
)

where w;;, is an RBF skinning weight calculated in Eq. (1).

Latent Distribution Regularization. We regularize the la-
tent distribution by minimizing the Kullback-Leibler (KL)
divergence Lk, between the learned motion distribution
N(m,,, o) and a standard Gaussian distribution A/(0, I):

N
L= 5 (080w —on—ph+1)  (10)

m

Coarse-to-Fine Motion Pre-training Schedule. To ensure
robust and efficient training, we disentangle the 3D motion
and geometry, and adopt a two-stage coarse-to-fine train-
ing schedule. In the first stage, we obtain a coarse motion
basis and latent space by pre-training the latent codes z,
canonical key points P, and motion decoder D.. Specifi-
cally, we initialize N key points as 3D Gaussians within a
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Figure 3. Qualitative Results. During inference, DIMO can instantly generate diverse 3D motions and photorealistic 4D contents in
a single forward pass by sampling from latent space. We render three motions for each case under two views at two novel timestamps.

sphere. During optimization, densification and pruning are
performed following 3DGS [20]. To avoid the local mo-
tion minima, every certain iteration we downsample the key
points to Vi using FPS [42] as an annealing process. Af-
ter this stage, we obtain a desirable key point distribution in
canonical space, which acts as the motion basis for subse-
quent deformation. More importantly, the model now has
learned a reasonable latent space for all motion patterns, on
top of which joint optimization of geometry and 3D motion
is much more efficient and robust.

In the second stage, we further incorporate the canonical
3D Gaussians G to capture the object geometry and jointly
optimize all parameters for fine-grained motions. To in-
herit the canonical shape (distribution) modeled in the first
stage, we randomly initialize n, canonical Gaussians within

a small sphere around each canonical key point with radius
ri, following [43, 56, 69]. To improve training stability, we
recycle the key point trajectories £ from the first stage to
guide the prediction £ in the second stage using a Chamfer

Distance regularization defined as Lcpamter = CD (5}, é}) .

For training efficiency and stability, we gradually increase
the rendering resolution from 128x128 to 512x512. At each
iteration, we randomly sample 4 motions x 3 views x 2
frames within a batch, providing multi-motion, multi-view,
and multi-frame constraints to guide gradient optimization.

Language-Guided Motion Generation. Since the videos
are generated from text prompts, the learned motion latent
space should also be compatible with language embeddings.
To establish the relationship between natural language and
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Figure 5. Visual Comparison on Image-to-4D. DIMO can generate high-quality 4D contents for both synthetic and in-the-wild objects.

motion space, we first encode the text prompts into text em-
beddings with pre-trained BERT [10] encoder and then train
a lightweight MLP to project the text embedding into the
motion latent code. After this, users could directly provide
novel text prompts and our model can generate the corre-
sponding motion and 4D content in a feed-forward manner,
as indicated in Fig. 7. Note that to allow people to use sim-
ple prompts during inference, we use ChatGPT [1] to sum-
marize the detailed video caption we use for video genera-
tion into a simple motion description such as “lift the right
hand” before feeding them into BERT.

4. Experiments

We conducted experiments in standard settings and bench-
marks to demonstrate the effectiveness of DIMO in gener-
ating diverse and high-fidelity 3D motions and 4D contents.
Furthermore, we highlight our applications in motion inter-
polation, language-guided motion generation, and test mo-
tion reconstruction by learning a motion latent space.

4.1. Experimental Setup

Dataset and Object Diversity. We use Objaverse [9], An-
imate124 [83], Consistent4D [18], DAVIS [38], SORA [7]-
generated and self-collected datasets for experiments. For
object diversity, we select a wide range of representative

synthetic and real-world objects including humans, robots,
bipods, quadrupeds, birds, plants, fluid and deformable ob-
jects with a total of 58 species, each with over 50 motions.
Implementation Details. We leverage Llama3 [59] and
GPT4o [16] to generate N,,, > 50 diverse motion prompts
for each object and adopt CogVideoX5B-I2V [74] to gen-
erate motion-rich videos. During training, we use 8 views
x 21 frames for each motion sequence and set the virtual
camera FOV to 33.9° with a fixed radius of 2m. We use
Ny, = 512 key points as the motion basis shared by all mo-
tion patterns. For the motion latent space, we employ the
Gaussian distribution parameters (i,,,, o, ) as learnable la-
tent variables for each motion m, with a latent dimension
of 32. The motion decoder D, is implemented as an 8-layer
MLP with a skip connection at the 4th layer. The MLP
receives motion latent codes, the sinusoidal positional em-
beddings [34] of time, and key points’ canonical positions
as input, predicting key points’ 6DoF transformations. We
train a separate generative model for each object. For the
50-motion joint training setting, we pretrain the motions for
2.8k steps in the first stage, which takes roughly 40 minutes
on a single 40GB A100 GPU, and for another 8k steps in the
second stage for joint optimization of geometry and motion
with an additional 3 hours. The rendering speed is 250 FPS
at 512x512 resolution with ~80k canonical 3DGS.
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Figure 8. Test Motion Reconstruction. The first row is the input video of the test motion, and the rest are our reconstruction results.

4.2. Comparisons

Comparison on 3D Motion Generation. Our method is
the first work to generate diverse 3D motions for any gen-
eral dynamic objects. To evaluate the diversity and qual-
ity of our generated 3D motions, we compare our DIMO
with DG4D [43] and 4DGen [76]. We repetitively run their
video diffusion models 50 times and perform 4D optimiza-
tion separately. Then we randomly sample a subset for eval-
uation. Specifically, we select 7 cases including Human,
Cat, Bird, Robot, and SORA [7]-generated Kangaroo, Ot-
ter, Monster. Each object has five motions. While baselines
train each motion sequence separately, our DIMO jointly
models all motions in a single generative model. A qualita-
tive comparison of 3D motion generation is shown in Fig. 4.
Following [43, 76, 83], we conduct a user study with 35
participants who are asked to evaluate based on four crite-
ria: motion diversity (MD), image alignment (IA), motion

quality (MQ), and 3D appearance (3D App.). The results in
Tab. 1 indicate that our DIMO has a clear advantage over
all baselines across all criteria, achieving better 3D motion
diversity and visual fidelity.

Table 1. Quantitative comparison on 3D Motion Generation.

Method | MDDt IAT MQ?T 3D App.T
DG4D [43] 11.4% 17.2% 8.6% 14.3%
4DGen [76] 8.6% 20.0% 22.8% 25.7%

Ours 80.0% 62.8% 68.6% 60.0%

Comparison on Image-to-4D. To quantitatively evaluate
our generation results, we compare our method with Ani-
matel124 [83], 4DGen [76], STAG4D [77], DG4D [43] and
SV4D [70] on Animatel124 and Objaverse dataset. Follow-
ing [43, 76, 83], we quantify image alignment using CLIP-I
and temporal coherence using CLIP-F. We conduct the user
study to measure the motion diversity. The qualitative com-



parisons are presented in Fig. 5. The quantitative compari-
son results in Tab. 2 show that our method outperforms the
baselines by a significant margin, demonstrating superior
performance in visual quality and temporal consistency.

Table 2. Quantitative comparison on Image-to-4D generation.

Method | cLpIt CLIPFt | MD{ | Training Time |
Animate124[83]|  0.8596 09756 8.1% 4.5h
4DGen [76] 0.9011 0.9854 5.4% 1h
STAG4D [77] 09281 0.9868 8.1% 1.5h
DGA4D [43] 0.9214 0.9883 102% 10min
SV4D [70] 0.9372 0.9904 8.1% 15min
Ours 0.9505 0.9912 59.4% 10min

Comparison on Video-to-4D. We also evaluate DIMO on
the widely-used Consistent4D [18] benchmark to measure
the 4D generation quality and temporal consistency. As re-
ported in Tab. 3, we achieve superior LPIPS [81], FVD [60],
and very competitive CLIP results, showing the faithful
consistency and visual details of our generated 4D contents.

Table 3. Quantitative comparison on Video-to-4D generation.

Method ‘ LPIPS | CLIP 1 FVD |

Consistent4D [18] 0.160 0.87 1133.93

STAGA4D [77] 0.126 0.91 992.21
DreamGaussian4D [43] 0.160 0.87 -
4DGen [76] 0.160 0.87 -

SV4D [70] 0.118 0.92 732.40

Ours 0.112 0.92 625.30

Comparison on Text-to-4D. To evaluate our language-
guided motion generation results, we compare with text-to-
4D baselines Animate124 [83] and 4D-fy [3] using six An-
imatel124 examples. Specifically, we provide each model
with the same 10 prompts generated by GPT4 [1]. It takes
5 hours to generate one Animatel24 and 12 hours for one
4D-fy instance, whereas DIMO generates text-guided 3D
motions within seconds in a single forward pass. We com-
pute the average of the largest 20% optical flows [57] within
the instance mask as motion amplitude and conduct a user
study to measure the text alignment & motion diversity. As
reported in Tab. 4, DIMO can efficiently generate more di-
verse, noticeable, and high-quality text-guided 3D motions.

Table 4. Quantitative comparison on Text-to-4D generation.

Method ‘ Motion Amplitude ‘ Text Alignment 1 Motion Diversity 1
Animate124 [83] 0.428 6.3% 9.3%
4D-fy [3] 0.254 12.5% 15.6%
Ours 4.319 81.3% 75.0%
4.3. Applications

Latent Space Motion Interpolation. To demonstrate the
completeness and continuity of our learned motion embed-
ding, we visualize the decoder’s output when interpolating
between pairs of motions in the latent space, as shown in
Fig. 6. The results indicate that the embedded motion latent
codes capture meaningful and common motion patterns of
the object, which can be effectively linearly interpolated to
generate novel, coherent 3D motions.

Language-Guided Motion Generation. Text-to-Motion
offers a more user-friendly approach to interactive motion

generation. We adopt GPT to generate 300 motion prompts
and cluster them into 60 (50 for training and 10 for evalu-
ation) in the BERT embedding space. We project language
into the motion latent code and then generate plausible mo-
tion sequences in a feed-forward manner, as shown in Fig. 7.

Test Motions Reconstruction. For encoding unseen mo-
tions, i.e., those in the held-out test set, DIMO demonstrates
strong performance in reconstruction quality and motion
alignment, as shown in Fig. 8. Given the multi-view videos
from the test set, we optimize the latent code, initialized as a
standard Gaussian A/ (0, I') from scratch, while keeping all
other parameters fixed. We only use the reconstruction loss
for fine-tuning, achieving convergence within 300 steps.

4.4. Ablation Study

We validate the effectiveness of our model’s design choices
in Tab. 5. We observe that both motion representation and
motion-oriented optimization are critical. Neural key point-
based motion factorization contributes to effective motion
distribution learning and improves the expressiveness of our
system. Furthermore, our DIMO leverages the latent space
to distinguish diverse motion patterns and model the un-
derlying motion distributions. We also verify the effective-
ness of motion pre-training in achieving robust and precise
motion reconstruction. Multi-motion joint training within
a single generative model forces the network to capture a
shared 4D geometric structure and learn a smooth, continu-
ous motion space. Thus, the generated 3D motions and 4D
contents are robust and less sensitive to high-frequency er-
rors or appearance inconsistency of video supervision, com-
pared with single-motion overfitting. More details and qual-
itative evidence can be found in the supplementary material.
Table 5. Ablation results on different components of DIMO.

Method | LPIPS | CLIP 1 FVD |

Full Model 0.126 0.93 587.09

w/o motion factorization 0.134 0.91 851.83
w/o latent space 0.163 0.87 1077.19

w/o motion pre-training 0.149 0.90 890.26
w/o multi-motion joint training 0.131 0.92 693.49

S. Limitations & Conclusion

Limitations and Future Direction. DIMO relies on video
models for object motion prior distillation, indicating that
improvements of these models are critical for enhancing
our performance. Also, we currently learn language-guided
motion generation in two stages by optimizing latent codes
and the language projector separately. Jointly learning these
two objectives within a single stage will be a key direction.

Conclusion. This paper takes the first step toward diverse
3D motion generation for general objects by learning a mo-
tion latent space. We achieve state-of-the-art performance
in a wide range of standard settings and benchmarks. We
hope this work could help us better understand numerous
dynamic objects in our physical world and inspire future re-
search in building a general SMPL-like parametric model.
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